REGIOSPECIFIC OXIDATIVE CYCLIZATION OF N-METHANESULFONYL-ALKYLAMINES: A NEW METHOD OF PYRROLIDINE RING CONSTRUCTION

Gennady I. Nikishin*, Emmanuil I. Troyansky, and Margarita I. Lazareva

N.D.Zelinsky Institute of Organic Chemistry,

USSR Academy of Sciences, Moscow, USSR

<u>Summary</u>. N-Methanesulfonylalkylamines cyclize regiospecifically into N-methanesulfonylpyrrolidines in one-pot oxidation reaction in $Na_2S_2O_8$ -CuCl₂.

In context of our investigations of the remote oxidative functionalization of ketones 1 , alkanoic acids and their derivatives 2 at non-activated C-atom providing the new approach to γ - and δ -diketones 1 and lactones 2 , we have studied oxidation of N-methanesulfonylalkylamines in Na₂S₂O₈-CuCl₂.

We have found that N-methanesulfonylalkylamines 1 under the action of $Na_2S_2O_8$ -CuCl $_2$ (molar ratio 1: $Na_2S_2O_8$:CuCl $_2$ =1:1:1) cyclize regiospecifically into N-methanesulfonylpyrrolidines 2.

R= H(a), Me(b), Et(c).

Of the substrates studied lb undergoes oxidative cyclization most easily. Yields of sulfonylpyrrolidines from la,c are 1.5-fold lower (Table).

Table. Oxidation of sulfonylalkylamines la-c in $Na_2S_2O_8$ -CuCl₂.

Substrate	Conversion,	Cyclization products, yields (%) based on $\frac{1}{2}$ converted (on the starting $\frac{1}{2}$) ³
la .	27	2a, 82 (22)
1 b	39	2b, 94 (37)
lc	37	2c, 71 (26)

The suggested mechanism of the reaction involves generation of N-centred cation radicals 3, that are converted in sulfonamidyl radicals 4. These radicals undergo 1,5-H shift to C-centred radicals 5. Sulfonylpyrrolidines 2 are formed as a result of oxidation of 5 to corresponding carbocations and subsequent cyclization.

Careful investigation of reaction products by means of ¹H NMR (250 MHz) and g.l.c. demonstrated the absence of corresponding 2-R-N-methanesulfonylpiperidines 6a,b that are isomers of 2b,c. This indicates the competitive 1,6-H shift in 4 is hardly probable.

Unlike oxidation of 1 we observed no pyrrolidines in reactions of ${\rm Na}_2{\rm S}_2{\rm O}_3$ -CuCl $_2$ system with alkylamines R(CH $_2$) $_4{\rm NH}_2$ themselves 5 or N-acetylalkylamines 6 .

The reaction studied represents a quite unique example of the completely regiospecific rearrangement of heterocentred radicals.

Smooth hydrolysis of $\underline{2}$ to corresponding 2-R-pyrrolidines on boiling with HBr-PhOH and simplicity of experimental procedure enable us to consider this reaction as a new effective method of pyrrolidine ring construction.

Typical procedure. A solution of 11.9 g (0.05 mole) of Na₂S₂O₈ in 50 ml of water was added dropwise to a stirred mixture of 8.25 g (0.05 mole) of 1b and 8.55 g (0.05 mole) of CuCl₂·2H₂O in 100 ml of water at 90°. The mixture was kept at the same temperature for 5 h, cooled to 20° and extracted with ether (2 x 100 ml) and CHCl₃ (100 ml), combined extracts were dried (MgSO₄). The residue (8.1 g) after solvent removal was analysed with ¹H NMR and g.1.c.; yield 2b 94% on 1b converted, conversion 39%. The solution of this residue in 100 ml of toluene was treated with 0.75 g (0.031 mole) of NaH to remove unreacted 1b as a N-Na-salt. The mixture was filtered off, evaporation of solvent afforded 2.98 g (0.018 mole) of pure 2b; ms: 163 (M⁺); ¹H NMR (CDCl₃, TMS, 250 MHz): 1.15 (d, 3H), 1.60-2.00 (m, 4H), 2.70 (s, 3H), 3.20 (m, 2H), 3.66 (m, 1H) p.p.m. 1b was recovered upon acidification of its Na-salt.

References and Notes.

- 1.G.I.Nikishin, E.I.Troyansky, M.I.Lazareva, <u>Tetrahedron Letters</u>, 1984, <u>25</u>, 4987
- 2.G.I.Nikishin, I.V.Svitanko, E.I.Troyansky, <u>J.Chem.Soc.Perkin Trans. 2</u>, 1983, 595
- 3.All products have satisfactory ¹H NMR and mass spectral data.
- 4. About structure and reactions of sulfonamidyl radicals see H. Teeninga, J.B.F.N. Engeberts, J. Org. Chem., 1983, 48, 537, and references cited therein.
- 5.E.I.Troyansky, V.A.Ioffe, I.V.Svitanko, G.I.Nikishin, <u>Izvestya AN SSSR</u>.

Ser. khim., 1983, 2554

6.Two-step cyclization of N-haloacetamides into N-acetylpyrrolidines was reported. T.C.Joseph, J.N.S.Tam, M.Kitadani, Y.L.Chow, Can.J.Chem., 1976, 54, 3517